Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria

نویسندگان

  • Joseph E. Reiner
  • Rani B. Kishore
  • Barbara C. Levin
  • Thomas Albanetti
  • Nicholas Boire
  • Ashley Knipe
  • Kristian Helmerson
  • Koren Holland Deckman
چکیده

BACKGROUND Mitochondrial DNA (mtDNA) genome mutations can lead to energy and respiratory-related disorders like myoclonic epilepsy with ragged red fiber disease (MERRF), mitochondrial myopathy, encephalopathy, lactic acidosis and stroke (MELAS) syndrome, and Leber's hereditary optic neuropathy (LHON). It is not well understood what effect the distribution of mutated mtDNA throughout the mitochondrial matrix has on the development of mitochondrial-based disorders. Insight into this complex sub-cellular heterogeneity may further our understanding of the development of mitochondria-related diseases. METHODOLOGY This work describes a method for isolating individual mitochondria from single cells and performing molecular analysis on that single mitochondrion's DNA. An optical tweezer extracts a single mitochondrion from a lysed human HL-60 cell. Then a micron-sized femtopipette tip captures the mitochondrion for subsequent analysis. Multiple rounds of conventional DNA amplification and standard sequencing methods enable the detection of a heteroplasmic mixture in the mtDNA from a single mitochondrion. SIGNIFICANCE Molecular analysis of mtDNA from the individually extracted mitochondrion demonstrates that a heteroplasmy is present in single mitochondria at various ratios consistent with the 50/50 heteroplasmy ratio found in single cells that contain multiple mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial DNA Mutations, Pathogenicity and Inheritance

Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...

متن کامل

Recent Advances in Detecting Mitochondrial DNA Heteroplasmic Variations.

The co-existence of wild-type and mutated mitochondrial DNA (mtDNA) molecules termed heteroplasmy becomes a research hot point of mitochondria. In this review, we listed several methods of mtDNA heteroplasmy research, including the enrichment of mtDNA and the way of calling heteroplasmic variations. At the present, while calling the novel ultra-low level heteroplasmy, high-throughput sequencing...

متن کامل

Role of Mitochondria in Ataxia-Telangiectasia: Investigation of Mitochondrial Deletions and Haplogroups

Ataxia-Telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease that is characterized by a wide range of features including, progressive cerebellar ataxia with onset during infancy, occulocutaneous telangiectasia, susceptibility to neoplasia, occulomotor disturbances, chromosomal instability and growth and developmental abnormalities. Mitochondrial DNA (mtDN...

متن کامل

Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasi...

متن کامل

Human mitochondria and mitochondrial genome function as a single dynamic cellular unit

rho 0 HeLa cells entirely lacking mitochondrial DNA (mtDNA) and mitochondrial transfection techniques were used to examine intermitochondrial interactions between mitochondria with and without mtDNA, and also between those with wild-type (wt) and mutant-type mtDNA in living human cells. First, unambiguous evidence was obtained that the DNA-binding dyes ethidium bromide (EtBr) and 4',6-diamidino...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010